

Summary of relevant work and future plans

Overview of material

- Kagome metal AV₃Sb₅ family
- T_c = 2.5K
- H_{c2}(0K) ~ 4 kOe
- CDW at 94K
- Possibly nodal superconducting gap
- All 17 ArXiv papers posted in 2021

Past work: Thermal Conductivity

- Evidence for nodal SC gap
- B = 100 Oe gives large enhancement of K below T_c

Past work: Multiple SC Domes

ρ vs P vs T reveals re-emerging SC with pressure

<u>Past work</u>: Magnetic field rotator ρ_c

- $\rho_{\text{out-of-plane}} = 23 * \rho_{\text{in-plane}}$
- Gap maxima *may* be along a-axis (?)
- 2 fold symmetry in transport
- *Theory*: chiral flux phase (?)
 - predicts TRS broken
 - predicts anomalous hall
 - Based on lowest energy phase giving reported charge ordering

<u>Past work</u>: Magnetic field rotator ρ_c

- $\rho_{\text{out-of-plane}} = 23 * \rho_{\text{in-plane}}$
- Gap maxima *may* be along a-axis (?)
- 2 fold symmetry in transport
- *Theory*: chiral flux phase (?)
 - predicts TRS broken
 - predicts anomalous hall
 - Based on lowest energy phase giving reported charge ordering

https://arxiv.org/pdf/2104.06909.pdf

<u>Past work</u>: Magnetic field rotator ρ_{ab}

Figure 4

- Another paper reporting similar symmetries in transport
- In this case, the current is in-plane (rather than out-of-plane as previously reported)

Shunli Ni et al., https://arxiv.org/pdf/2104.00374.pdf

Past work: Pair Density Wave

I need to read this more, but I think the basis is:

Normal State:

- 4a0 unidirectional charge order
- 2×2 charge order

<u>Superconducting State</u>:

- 4a0/3 bidirectional PDW
- "Roton-PDW that can produce a commensurate vortex-antivortex latticeto account for the observed conductance modulations"

https://arxiv.org/pdf/2103.09188.pdf

Measurement plans (?)

- Questions to address:
 - Multi-component order parameter? (if we can resolve it in TC)
 - What is the gap symmetry?
- Potentially useful vector magnet experiment:
 - At base T: K_{ZF} then K(100 Oe) angular dependence?
 - Temperature sweeps at field angles determined by K(100 Oe) angular dependence

Useful ArXiv references

- Thermal conductivity possibly nodal SC gap function https://arxiv.org/pdf/2102.08356.pdf
- Competition between CDW and SC in P,T phase diagram https://arxiv.org/pdf/2103.03118.pdf ← SC, CDW, metal phase diagram (single SC phase) https://arxiv.org/pdf/2102.09328.pdf ← SC, CDW, metal phase diagram (re-entrant SC phase) https://arxiv.org/pdf/2103.13759.pdf https://arxiv.org/pdf/2103.12507.pdf
- Charge order and Superconducting gap from STM https://arxiv.org/pdf/2105.04542.pdf https://arxiv.org/pdf/2104.08810.pdf ← multi-gap in dI/dV spectra https://arxiv.org/pdf/2103.09188.pdf ← pair-density-wave in SC https://arxiv.org/pdf/2103.03118.pdf ← multiple symmetry braking states
- Anisotropic superconductivity from angle-dependent transport https://arxiv.org/pdf/2104.00374.pdf
- ARPES https://arxiv.org/pdf/2105.01689.pdf ← vanHove Singulariy https://arxiv.org/pdf/2104.08042.pdf ← mostly about the CDW

Overview of ArXiv papers

- 5 Superconductivity under pressure
- 2 CDW transition
- 1 Oxidized / defects
- 1 Thickness study
- 2 Anomalous hall
- 4 STM
- 2 ARPES
- 1 NMR
- 2 Quantum Oscillations
- 1 2-fold symmetry in transport
- 1 Thermal conductivity