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I. GEOMETRY EFFECT AND ANALOGY OF OHMS LAW

A. Review of Ohm’s law

In introductory physics, we learn that voltage and current are proportional in many

materials (V ∝ I). The coefficient of this linear relation is resistance, R:

V = IR (1)

The units of resistance, R, is in Ω (Ohms). This R depends both the geometry and the

intrinsic property of the material. For a long bar shaped sample, if one wants to measure

the resistance between a distance, L,

R = ρ
L

Wt
, (2)

where W is the width and t is the thickness of the material. ρ is the intrinsic property

of the material called resistivity. Often times, we express this intrinsic material property

as an inverse called conductivity, σ = 1/ρ.

There is a differential version of Ohm’s law, a slightly more advanced version.

~j = σ ~E, (3)
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where j is the current density and E is the electric field. When the electric field does not

change with time, we learn from electromagnetics that ~E = −~∇V . Then, Eq. (3) can be

expressed as:

~j = −σ~∇V, (4)

Let me demonstrate that Eq. (1) can be derived from Eq. (3).

If the current density is uniform in a specific direction, we can integrate the current

density with its cross section, A, to obtain the total current, I:

I =

∫
~j · da = j × A (5)

Next, if we assume the electric field is also constant in a specific direction, say ~x, and

we are measuring the voltage difference of distance, L,

V = −
∫

~E · d~x = EL, (6)

or V = E/L. In addition, charge must be conserved. The differential version of charge

conservation is the continuity equation:

~∇ ·~j +
∂ρ

∂t
= 0. (7)

Let us think of the region where no charge is built up. The second term of Eq. (7) is

zero. Then, with ~∇ ·~j = 0, and Eq. (4),

σ∇2V = 0. (8)

This is basically the Laplace equation. Therefore, in many cases, solving Ohm’s law

numerically for a given geometry is almost identical to solving a Laplace equation in elec-

trostatics.

We shouldn’t end here. Uniqueness theorem states that an electric potential (V ) is only

uniquely found with the boundary conditions. We review what those boundary conditions

for determining voltage and resistance.

• Sample Boundary
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Current cannot escape the boundary of the sample, unless a (current or voltage) source

or drain (ground) is connected. This means that Neumann boundary condition must

be satisfied at the sample boundary:

n̂ ·~j = 0, (9)

except for the electrodes.

• Ground electrode boundary

V = 0 (10)

by definition.

• Source Electrode boundary

Two kind of sources can be used: a constant voltage source or a constant current

source. Mathematically, the constant voltage source is a Dirichlet boundary condition:

V = V0 (11)

The constant current source is similar to Eq. (9), but we impose another constraint.

Integrating the area of the boundary should give the total current that is being applied

to the sample:

∫
∂Ω

−n̂ ·~j dS = I0. (12)

• Voltage Electrodes (Floating voltage)

The voltage measurements are measured by highly conductive metals that do not have

a pre- well-defined electric potential. We rely on the fact that the electrode has σ →∞.

Then, this would have no voltage change within the electrode geometry. This implies

that a Voltage is constant within the electrode. Also, Neumann boundary conditions

still apply.

V = Constant (13)
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and ∫
∂Ω

−n̂ ·~j dS = 0. (14)

B. Example: Simulation of a Bar-Shaped Sample

FIG. 1. Geometry of a Bar-Shaped Geometry. The blue color is the sample surface and the Yellow

color is the electrode.

Let us try to mimic a transport geometry that many researchers use for their mea-

surement. The schematic is shown in Fig. (1).

We try try the following dimensions:

– Length = 2 mm

– Width = 0.5 mm

– Thickness = 0.2 mm

– Pad Lengths are all 0.3 mm

– IV Space = IV Space = 0.266 mm

– Active Region = 0.266 mm

Now according to Eq. (2), the actual length that I need to use is not the total length

of the sample, it is the active region. if I use σ = 1 Ω-cm, then I get 26.6 Ω. If I

numerically estimate the resistance, I get 40 Ω. We know the reason. It is because the
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FIG. 2. Resistance simulation result by varying the thickness.

active region (channel length) is too short compared to the thickness, and therefore

the current is not uniform along the thickness direction.

In Fig. (2), I show you how the estimated resistance from Eq. (2) compares with the

numerical simulation. You can see that the error becomes significantly smaller when

the thickness is smaller. This is a fun practice that demonstrates that your error can

be off by roughly 50 percent. What does this mean?

A general form of resistivity and resistance relation is:

R = gρ, (15)

where all of the geometry information is in g. If I use Eq. (3), I am always using a

smaller g value than what I am suppose to. Then, since I would estimate the resistivity

by my resistance measurement as: ρ = R/g, I would be overestimating the resistivity

value.

Let us imagine another case, you are in the lab and forgot to measure the dimensions

of your sample. Can I roughly convert it to a reasonable resistivity? Yes. You divide

by roughly 30 and put units of Ohm-cm. I think you won’t get terribly unphysical
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FIG. 3. Temperature change when an ac heat signal is applied through the UTe2 sample. T =3 K

and an ac current of 0.3mA is sent through a 10kΩ heater.

resistivity values.

Let us think of the opposite case, if I measure UTe2, the sample is in the mOhm-cm

range at high temperatures. If I multiply by 30 and put units of Ohms, I get about 30

miliOhms. Good metals (such as gold or silver) have resistivity at room temperature

in the 1 µ Ohm-cm range. Then, I should be able to measure in the 10s of µOhm

range.

C. Geometry Calculation of Thermal Conductivity

I will do this part later when I feel like it.

II. ALTERNATING HEAT CURRENT

1. Experimental Observation

When applying an ac heat current, you see the following temperature change as shown

in Fig. (3). Here I summarize the features:

• Roughly the thermometer signal repeats at twice the applied frequency (2ω).

• The amplitude becomes smaller at higher heat frequencies.
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FIG. 4. (a) ac (constant) current flowing through a sample that has conductivity, σ, and permit-

tivity, ε. (b) Equivalent circuit model.

• At a sufficiently high frequency, the temperature saturates at half the amplitude of

the very low frequency heat case.

• Strictly speaking, the signal repeats at ω not 2ω. The amplitude of the peak is slightly

different from the following peak.

From the previous section, I have shown you that a lot of our intuition from electrical con-

duction can be used in thermal conduction since the heat equation and continuity equation

of charge have the same mathematical structure. So far, however, I have only considered

the case in the dc limit (ω → 0).

A. Alternating electrical current

In this section, again using the analogy between heat conduction and electrical conduc-

tion, I will discuss what happens when heat current is alternating sinusoidally. Let us first

consider the case when an ac electrical current flows through a uniform sample, as shown in

Fig. (4) (a). I want to know what the electric potential is where the red arrow is located.

Recall, in the dc case, we used Ohm’s law:
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~j = σ ~E (16)

If we take the divergence of this equation, we have:

~∇ ·~j = σ~∇ · ~E = 0 (17)

This is the case of the continuity equation when there is no charge build up. (∂ρ/∂t→ 0).

Let us restore the charge term again and look at the full version of the continuity equation.

~∇ ·~j +
∂ρ

∂t
= 0. (18)

To find a macroscopic equation for a uniform sample, we integrate over the entire volume:

∫
dv ~∇ ·~j +

∂ρ

∂t
= 0. (19)

In a linearly dielectric material,

~∇ · ~E =
ρ

ε
, (20)

Using Gauss’ law, the volume integral becomes an surface integral, where the surface is

the boundary that encloses the volume:

∫
dv ~∇ · (~j + ε

∂

∂t
~E) =

∮
da (~j + ε

∂

∂t
~E) = 0. (21)

Calculating the first term is:

∫
~j → j × A = I = (σ × A/L)× (E × L) = V/R. (22)

Integrating the second term is also a familiar one:

∫
ε
∂

∂t
E → (ε× A/L)× d

dt
(E × L) = C

dV

dt
, (23)

where C is the capacitance. Therefore, if I send a total current of Itotal through the material

using a constant current source, I have the following conservation of current equation:

Itotal =
V

R
+ C

dV

dt
(24)
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This is identical to Kirchoff’s equation for a resistor and capacitance connected in parallel,

as shown in Fig. (4) (b). In circuit class, we solve this kind of circuit equation by letting

voltage and current imaginary instead of sines and cosines. If Itotal = I0 sin(ωt) = I0Im[eiωt],

we can try V = V0e
i(ωt+φ).

I0e
iωt = V0(

1

R
+ iωC)ei(ωt+φ). (25)

We can use the beautiful Euler formula: exp(iθ) = cos(θ) + i sin(θ).

1

R
+ iωC =

√
1

R2
+ (ωC)2 exp(iψ), (26)

where

ψ ≡ tan−1(ωRC) ≡ tan−1(ωτ). (27)

I defined τ ≡ RC as the time constant.

Returning back to Eq. (25),

I0e
iωt = V0

√
1

R2
+ (ωC)2ei(ωt+φ+ψ). (28)

Comparing the left hand side and right hand side, the amplitude part requires

V0 =
I0√

1
R2 + (ωC)2

=
I0R√

1 + (ωτ)2
, (29)

and the phase part requires

φ = −ψ = − tan−1(ωτ) (30)

We can plug these findings of amplitude and phase to V = V0e
i(ωt+φ),

V =
I0R√

1 + (ωτ)2
ei(ωt−tan−1(ωτ)) (31)

Taking the imaginary part,

Im[V ] =
I0R√

1 + (ωτ)2
sin (ωt− tan−1(ωτ)). (32)

Note, that if the current source was a cosine instead of a sine, you will need to take the

real part
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FIG. 5. (a) ac (constant) heat current flowing through a sample that has thermal conductivity, κ,

density, ρ, and specific heat, cp. (b) Equivalent circuit model.

Re[V ] =
I0R√

1 + (ωτ)2
cos (ωt− tan−1(ωτ)). (33)

B. Alternating Heat Current

In ac electrical transport, I used the (charge) continuity equation and showed that this can

be viewed as a circuit of a resistor and capacitor connected in parallel. For heat conduction,

we consider the heat equation, which has a similar form as the continuity equation:

− κ~∇2T + ρcp
∂T

∂t
= 0, (34)

where ρ is the density of the material and cp is the specific heat. Again, let us consider

the case where an ac heat current is flowing uniformly through the sample, as shown in

Fig. (5) (a). This time, want to know the temperature where the red arrow is located. We

can integrate the entire volume,

∫
−κ~∇2Tdv =

∮
jda→ −κ~∇T × A = (κ× A/L)× T = KT, (35)

and ∫
cpρ

∂T

∂t
dv →

∫
cpρ dv ×

∂T

∂t
= Cp

∂T

∂t
, (36)
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where the total heat capacity is:

Cp ≡
∫
cpρdv (37)

Then, we have

KT + Cp
∂T

∂t
= Q̇source (38)

Q̇source is the power from the heat source. Typically, an ac current, I = I0 sin(ωt), flows

through a high resistance heater, Rheater and heats the sample by Joule heating:

Q̇source = I2Rheater = I2
0Rheater sin2(ωt) = (

I2
0Rheater

2
)(1− cos(2ωt)). (39)

The heat source can be viewed as a sum of a dc heat source and an ac heat source,

oscillating with 2ω.

Q̇source = (
I2

0Rheater

2
)− (

I2
0Rheater

2
) cos(2ωt) = Q̇dc

source + Q̇2ω
source. (40)

Remember that Eq. (38) is a linear differential equation, meaning that the superposi-

tion principle holds. We can, therefore, separate this equation into two and solve them

independently and later superimpose the two solutions:

KT dc + Cp
∂T dc

∂t
= Q̇dc

source, (41)

and

KT ac + Cp
∂T ac

∂t
= Q̇2ω

source, (42)

Next, we need to set the initial condition. In equilibrium, Q̇source = 0, the entire sample

is the same temperature as the bath temperature, i.e., T = Tbath. The solution for the dc

heat equation, Eq. (41), is:

T dc(t) = Tbath +
T0

2
(1− exp(−Cp/τq), (43)

where I have defined

T0

2
≡ I0R

2

2K
, (44)

and
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τq ≡
Cp
K

(45)

The solution for the ac problem is similar to the electrical circuit example from the

previous subsection.

We replace the following quantities:

V → T, (46)

ω → 2ω, (47)

I0 → −
I2Rheater

2
, (48)

1

R
→ K, (49)

C → Cp (50)

Then,

Re[T ac] =
−T0/2√
1 + 4ω2τ 2

q

cos(2ωt+ tan−1(2ωτq)) (51)

The total solution is:

T = T dc + T ac = Tbath +
T0

2
(1− exp(−t/τq) +

T0/2√
1 + 4ω2τ 2

q

cos(2ωt+ tan−1(2ωτq)) (52)

Technically, the superposition principle have coefficients in front of T dc and T ac, and

boundary or initial conditions determine those coefficients. Instead of going through that

boring process, I try to convince you in the following that this solution is correct by consid-

ering extreme limits.

• Waiting for a long time (t� τ)

After waiting for a long time, the temperature will only oscillate with 2ω

T (t) ≈ Tbath +
T0

2
+

T0/2√
1 + 4ω2τ 2

q

cos(2ωt+ tan−1(2ωτq)) (53)
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• dc limit (ω → 0):

In the dc limit, T (t) → Tbath + T0, or T0 − Tbath = I2
0R/K. This is exactly the same

formula for finding the temperature change for dc thermal conductivity measurements.

Remember, for finding the thermal conductivity experimentally, the most important

information we want to measure is T0.

• Low frequency limit:

In the low frequency limit, ωτ � 1, therefore:

T (t) ≈ Tbath +
T0

2
(1 + cos(2ωt)) = Tbath + T0 cos2(ωt) (54)

• High frequency limit :

In the high frequency limit, ωτ � 1, we have

T (t) ≈ Tbath +
T0

2
+
T0

2

sin(2ωt)

2ωτq
(55)

In the very high frequency limit, ω → ∞, the sample temperature will only change

half of the dc case T → Tbath + T0
2

.

So far, this explains almost all the features of our experimental observation of Fig. (3).

There is one more feature we did not capture: the signal has another periodicity of ω in

addition to 2ω. This can be explained if the resistance of the heater changes with the

magnitude of the current,

R ≈ R0 + αI = R0 + αI0 sinωt, (56)

where I have defined α ≡ (dR/dI)|I0 . The heat current becomes;

Q̇heater = I2R ≈ I2
0 sin2(ωt)(R0 + αI0 sinωt) = Q̇dc + Q̇ac + αI3

0 sin3(ωt) (57)

This means we have two extra heat equations to superimpose for finding our final solution.

Q̇extra = αI3
0 sin3(ωt) = αI3

0 (
3 sinωt− sin 3ωt

4
) = Q̇ω − Q̇3ω. (58)

We define

T1 ≡ αI3
0/K (59)
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The solution for these extra terms are:

Textra =
3T1

4
√

1 + ω2τ 2
q

sin(ωt+ tan−1(ωτq))−
T1

4
√

1 + 9ω2τ 2
q

sin(3ωt+ tan−1(3ωτq)) (60)

The first is larger and drops in magnitude slower than the second term when ω is increased.

Therefore, in most cases, you will see a sine wave oscillating with ω in addition to a cosine

wave oscillating with 2ω.
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